搜尋產品

建立產品組合並完成索引作業後,即可使用 Cloud Vision API 查詢產品組合。

如要尋找與指定圖片類似的產品,請將圖片的 Google Cloud Storage URI、網頁網址或 Base64 編碼字串傳送至 Vision API 產品搜尋。如需最大要求大小和配額資訊,請參閱「使用限制」。

如要查看單一產品偵測和圖片中多個產品偵測的範例,請參閱「瞭解搜尋回應和多重偵測」主題。

使用本機圖片搜尋

下列範例會讀取本機檔案,並在要求中內嵌原始圖片位元組 (Base64 編碼圖片),藉此查詢 API。

REST

使用任何要求資料之前,請先替換以下項目:

  • BASE64_ENCODED_IMAGE:二進位圖片資料的 Base64 表示法 (ASCII 字串)。這個字串應類似下列字串:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    詳情請參閱 base64 編碼主題。
  • PROJECT_ID:您的 Google Cloud 專案 ID。
  • LOCATION_ID:有效的地點 ID。有效的位置識別碼包括:us-west1us-east1europe-west1asia-east1
  • PRODUCT_SET_ID:要對其執行作業的產品組合 ID。

欄位專屬注意事項:

  • features.maxResults - 要傳回的結果數上限。
  • imageContext.productCategories - 要搜尋的產品類別。目前只能指定一個產品類別 (居家用品、服飾、玩具、民生消費用品和一般用品)。
  • imageContext.filter - (選用) 產品標籤的鍵/值篩選運算式 (或多個運算式)。格式:「key=value」。篩選鍵/值組合時,可使用 AND 或 OR 運算式連結:「color=blue AND style=mens」或「color=blue OR color=black」。如果使用 OR 運算式,運算式中的所有鍵都必須相同

HTTP 方法和網址:

POST https://vision.googleapis.com/v1/images:annotate

JSON 要求主體:

{
  "requests": [
    {
      "image": {
        "content": base64-encoded-image
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

如要傳送要求,請選擇以下其中一個選項:

curl

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果要求成功,伺服器會傳回 200 OK HTTP 狀態碼與 JSON 格式的回應。

回應 JSON 包含下列兩種結果類型:

  • productSearchResults:包含整張圖片的相符產品清單。在範例回應中,相符的產品為:product_id65、 product_id35、product_id34、product_id62、 product_id32。
  • productGroupedResults - 包含圖片中識別出的各項產品的定界框座標和相符項目。在下列回應中,系統只識別出一個產品,接著是範例產品集中相符的產品:product_id65、product_id35、product_id34、product_id93、product_id62。

請注意,雖然這兩種結果類型有重疊之處,但也可能存在差異 (例如回應中的 product_id32 和 product_id93)。

Go

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Go API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


import (
	"context"
	"fmt"
	"io"
	"os"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProducts searches for products from a product set similar to products in an image file.
func getSimilarProducts(w io.Writer, projectID string, location string, productSetID string, productCategory string, file string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	f, err := os.Open(file)
	if err != nil {
		return fmt.Errorf("Open: %w", err)
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return fmt.Errorf("NewImageFromReader: %w", err)
	}

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Java API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

/**
 * Search similar products to image in local file.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param filePath - Local file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws IOException - on I/O errors.
 */
public static void getSimilarProductsFile(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String filePath,
    String filter)
    throws IOException {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.format(projectId, computeRegion, productSetId);

    // Read the image as a stream of bytes.
    File imgPath = new File(filePath);
    byte[] content = Files.readAllBytes(imgPath.toPath());

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    // The input image can be a HTTPS link or Raw image bytes.
    // Example:
    // To use HTTP link replace with below code
    //  ImageSource source = ImageSource.newBuilder().setImageUri(imageUri).build();
    //  Image image = Image.newBuilder().setSource(source).build();
    Image image = Image.newBuilder().setContent(ByteString.copyFrom(content)).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Node.js API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
const fs = require('fs');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsFile() {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'nodejs-docs-samples';
  // const location = 'us-west1';
  // const productSetId = 'indexed_product_set_id_for_testing';
  // const productCategory = 'apparel';
  // const filePath = './resources/shoes_1.jpg';
  // const filter = '';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );
  const content = fs.readFileSync(filePath, 'base64');
  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {content: content},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  const results = response['responses'][0]['productSearchResults']['results'];
  console.log('\nSimilar product information:');
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsFile();

Python

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Python API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import vision

def get_similar_products_file(
    project_id,
    location,
    product_set_id,
    product_category,
    file_path,
    filter,
    max_results,
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        file_path: Local file path of the image to be searched.
        filter: Condition to be applied on the labels.
                Example for filter: (color = red OR color = blue) AND style = kids
                It will search on all products with the following labels:
                color:red AND style:kids
                color:blue AND style:kids
        max_results: The maximum number of results (matches) to return. If omitted, all results are returned.
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Read the image as a stream of bytes.
    with open(file_path, "rb") as image_file:
        content = image_file.read()

    # Create annotate image request along with product search feature.
    image = vision.Image(content=content)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(
        image, image_context=image_context, max_results=max_results
    )

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


其他語言

C#: 請按照用戶端程式庫頁面的 C# 設定說明操作, 然後前往 .NET 適用的 Vision API Product Search 參考說明文件

PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明 操作,然後前往 PHP 適用的 Vision API 產品搜尋參考文件

Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision API Product Search 參考說明文件

使用遠端圖片搜尋

你也可以指定圖片的 Cloud Storage URI,尋找與該圖片類似的產品。

REST

使用任何要求資料之前,請先替換以下項目:

  • CLOUD_STORAGE_IMAGE_URI:Cloud Storage 值區中有效圖片檔案的路徑。您必須至少擁有檔案的讀取權限。 範例:
    • gs://storage-bucket/filename.jpg
  • PROJECT_ID:您的 Google Cloud 專案 ID。
  • LOCATION_ID:有效的地點 ID。有效的位置識別碼包括:us-west1us-east1europe-west1asia-east1
  • PRODUCT_SET_ID:要對其執行作業的產品組合 ID。

欄位專屬注意事項:

  • features.maxResults - 要傳回的結果數上限。
  • imageContext.productCategories - 要搜尋的產品類別。目前只能指定一個產品類別 (居家用品、服飾、玩具、民生消費用品和一般用品)。
  • imageContext.filter - (選用) 產品標籤的鍵/值篩選運算式 (或多個運算式)。格式:「key=value」。篩選鍵/值組合時,可使用 AND 或 OR 運算式連結:「color=blue AND style=mens」或「color=blue OR color=black」。如果使用 OR 運算式,運算式中的所有鍵都必須相同

HTTP 方法和網址:

POST https://vision.googleapis.com/v1/images:annotate

JSON 要求主體:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "type": "PRODUCT_SEARCH",
          "maxResults": 5
        }
      ],
      "imageContext": {
        "productSearchParams": {
          "productSet": "projects/project-id/locations/location-id/productSets/product-set-id",
          "productCategories": [
               "apparel"
          ],
          "filter": "style = womens"
        }
      }
    }
  ]
}

如要傳送要求,請選擇以下其中一個選項:

curl

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

將要求主體儲存在名為 request.json 的檔案中,然後執行下列指令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果要求成功,伺服器會傳回 200 OK HTTP 狀態碼與 JSON 格式的回應。

回應 JSON 包含下列兩種結果類型:

  • productSearchResults:包含整張圖片的相符產品清單。在範例回應中,相符的產品為:product_id65、 product_id35、product_id34、product_id62、 product_id32。
  • productGroupedResults - 包含圖片中識別出的各項產品的定界框座標和相符項目。在下列回應中,系統只識別出一個產品,接著是範例產品集中相符的產品:product_id65、product_id35、product_id34、product_id93、product_id62。

請注意,雖然這兩種結果類型有重疊之處,但也可能存在差異 (例如回應中的 product_id32 和 product_id93)。

Go

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Go API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


import (
	"context"
	"fmt"
	"io"

	vision "cloud.google.com/go/vision/apiv1"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
)

// getSimilarProductsURI searches for products from a product set similar to products in an image file on GCS.
func getSimilarProductsURI(w io.Writer, projectID string, location string, productSetID string, productCategory string, imageURI string, filter string) error {
	ctx := context.Background()
	c, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return fmt.Errorf("NewImageAnnotatorClient: %w", err)
	}
	defer c.Close()

	image := vision.NewImageFromURI(imageURI)

	ictx := &visionpb.ImageContext{
		ProductSearchParams: &visionpb.ProductSearchParams{
			ProductSet:        fmt.Sprintf("projects/%s/locations/%s/productSets/%s", projectID, location, productSetID),
			ProductCategories: []string{productCategory},
			Filter:            filter,
		},
	}

	response, err := c.ProductSearch(ctx, image, ictx)
	if err != nil {
		return fmt.Errorf("ProductSearch: %w", err)
	}

	fmt.Fprintf(w, "Product set index time:\n")
	fmt.Fprintf(w, "seconds: %d\n", response.IndexTime.Seconds)
	fmt.Fprintf(w, "nanos: %d\n", response.IndexTime.Nanos)

	fmt.Fprintf(w, "Search results:\n")
	for _, result := range response.Results {
		fmt.Fprintf(w, "Score(Confidence): %f\n", result.Score)
		fmt.Fprintf(w, "Image name: %s\n", result.Image)

		fmt.Fprintf(w, "Prodcut name: %s\n", result.Product.Name)
		fmt.Fprintf(w, "Product display name: %s\n", result.Product.DisplayName)
		fmt.Fprintf(w, "Product labels: %s\n", result.Product.ProductLabels)
	}

	return nil
}

Java

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Java API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

/**
 * Search similar products to image in Google Cloud Storage.
 *
 * @param projectId - Id of the project.
 * @param computeRegion - Region name.
 * @param productSetId - Id of the product set.
 * @param productCategory - Category of the product.
 * @param gcsUri - GCS file path of the image to be searched
 * @param filter - Condition to be applied on the labels. Example for filter: (color = red OR
 *     color = blue) AND style = kids It will search on all products with the following labels:
 *     color:red AND style:kids color:blue AND style:kids
 * @throws Exception - on errors.
 */
public static void getSimilarProductsGcs(
    String projectId,
    String computeRegion,
    String productSetId,
    String productCategory,
    String gcsUri,
    String filter)
    throws Exception {
  try (ImageAnnotatorClient queryImageClient = ImageAnnotatorClient.create()) {

    // Get the full path of the product set.
    String productSetPath = ProductSetName.of(projectId, computeRegion, productSetId).toString();

    // Get the image from Google Cloud Storage
    ImageSource source = ImageSource.newBuilder().setGcsImageUri(gcsUri).build();

    // Create annotate image request along with product search feature.
    Feature featuresElement = Feature.newBuilder().setType(Type.PRODUCT_SEARCH).build();
    Image image = Image.newBuilder().setSource(source).build();
    ImageContext imageContext =
        ImageContext.newBuilder()
            .setProductSearchParams(
                ProductSearchParams.newBuilder()
                    .setProductSet(productSetPath)
                    .addProductCategories(productCategory)
                    .setFilter(filter))
            .build();

    AnnotateImageRequest annotateImageRequest =
        AnnotateImageRequest.newBuilder()
            .addFeatures(featuresElement)
            .setImage(image)
            .setImageContext(imageContext)
            .build();
    List<AnnotateImageRequest> requests = Arrays.asList(annotateImageRequest);

    // Search products similar to the image.
    BatchAnnotateImagesResponse response = queryImageClient.batchAnnotateImages(requests);

    List<Result> similarProducts =
        response.getResponses(0).getProductSearchResults().getResultsList();
    System.out.println("Similar Products: ");
    for (Result product : similarProducts) {
      System.out.println(String.format("\nProduct name: %s", product.getProduct().getName()));
      System.out.println(
          String.format("Product display name: %s", product.getProduct().getDisplayName()));
      System.out.println(
          String.format("Product description: %s", product.getProduct().getDescription()));
      System.out.println(String.format("Score(Confidence): %s", product.getScore()));
      System.out.println(String.format("Image name: %s", product.getImage()));
    }
  }
}

Node.js

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Node.js API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const productSearchClient = new vision.ProductSearchClient();
const imageAnnotatorClient = new vision.ImageAnnotatorClient();

async function getSimilarProductsGcs(
  projectId,
  location,
  productSetId,
  productCategory,
  filePath,
  filter
) {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const projectId = 'Your Google Cloud project Id';
  // const location = 'A compute region name';
  // const productSetId = 'Id of the product set';
  // const productCategory = 'Category of the product';
  // const filePath = 'Local file path of the image to be searched';
  // const filter = 'Condition to be applied on the labels';
  const productSetPath = productSearchClient.productSetPath(
    projectId,
    location,
    productSetId
  );

  const request = {
    // The input image can be a GCS link or HTTPS link or Raw image bytes.
    // Example:
    // To use GCS link replace with below code
    // image: {source: {gcsImageUri: filePath}}
    // To use HTTP link replace with below code
    // image: {source: {imageUri: filePath}}
    image: {source: {gcsImageUri: filePath}},
    features: [{type: 'PRODUCT_SEARCH'}],
    imageContext: {
      productSearchParams: {
        productSet: productSetPath,
        productCategories: [productCategory],
        filter: filter,
      },
    },
  };
  console.log(request.image);

  const [response] = await imageAnnotatorClient.batchAnnotateImages({
    requests: [request],
  });
  console.log('Search Image:', filePath);
  console.log('\nSimilar product information:');

  const results = response['responses'][0]['productSearchResults']['results'];
  results.forEach(result => {
    console.log('Product id:', result['product'].name.split('/').pop(-1));
    console.log('Product display name:', result['product'].displayName);
    console.log('Product description:', result['product'].description);
    console.log('Product category:', result['product'].productCategory);
  });
}
getSimilarProductsGcs();

Python

如要瞭解如何安裝及使用 Vision API Product Search 的用戶端程式庫,請參閱 Vision API Product Search 用戶端程式庫。 詳情請參閱 Vision API Product Search Python API 參考說明文件

如要向 Vision API Product Search 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import vision

def get_similar_products_uri(
    project_id, location, product_set_id, product_category, image_uri, filter
):
    """Search similar products to image.
    Args:
        project_id: Id of the project.
        location: A compute region name.
        product_set_id: Id of the product set.
        product_category: Category of the product.
        image_uri: Cloud Storage location of image to be searched.
        filter: Condition to be applied on the labels.
        Example for filter: (color = red OR color = blue) AND style = kids
        It will search on all products with the following labels:
        color:red AND style:kids
        color:blue AND style:kids
    """
    # product_search_client is needed only for its helper methods.
    product_search_client = vision.ProductSearchClient()
    image_annotator_client = vision.ImageAnnotatorClient()

    # Create annotate image request along with product search feature.
    image_source = vision.ImageSource(image_uri=image_uri)
    image = vision.Image(source=image_source)

    # product search specific parameters
    product_set_path = product_search_client.product_set_path(
        project=project_id, location=location, product_set=product_set_id
    )
    product_search_params = vision.ProductSearchParams(
        product_set=product_set_path,
        product_categories=[product_category],
        filter=filter,
    )
    image_context = vision.ImageContext(product_search_params=product_search_params)

    # Search products similar to the image.
    response = image_annotator_client.product_search(image, image_context=image_context)

    index_time = response.product_search_results.index_time
    print("Product set index time: ")
    print(index_time)

    results = response.product_search_results.results

    print("Search results:")
    for result in results:
        product = result.product

        print(f"Score(Confidence): {result.score}")
        print(f"Image name: {result.image}")

        print(f"Product name: {product.name}")
        print("Product display name: {}".format(product.display_name))
        print(f"Product description: {product.description}\n")
        print(f"Product labels: {product.product_labels}\n")


其他語言

C#: 請按照用戶端程式庫頁面的 C# 設定說明操作, 然後前往 .NET 適用的 Vision API Product Search 參考說明文件

PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明 操作,然後前往 PHP 適用的 Vision API 產品搜尋參考文件

Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision API Product Search 參考說明文件