Analiza sintaxis

Mientras que la mayoría de los métodos de Natural Language analizan de qué se trata un texto, el método analyzeSyntax inspecciona la estructura del idioma en sí. El análisis sintáctico divide el texto dado en una serie de oraciones y tokens (por lo general, palabras) y proporciona información lingüística sobre estos tokens. Consulta Árboles de morfología y dependencia para obtener detalles sobre el análisis lingüístico y también Idiomas compatibles para ver una lista de los idiomas cuya sintaxis puede analizar la API de Natural Language.

Esta sección muestra algunas maneras de detectar la sintaxis en un documento. Para cada documento, debes enviar una solicitud diferente.

Analizar la sintaxis en una string

Este es un ejemplo de un análisis sintáctico en una string de texto enviada directamente a la API de Natural Language:

Protocolo

Para analizar la sintaxis en un documento, realiza una solicitud POST al método documents:analyzeSyntax de REST y proporciona el cuerpo de solicitud adecuado, como se muestra en el siguiente ejemplo.

En este ejemplo, se usa el comando gcloud auth application-default print-access-token a fin de obtener un token de acceso correspondiente a una cuenta de servicio configurada para el proyecto con la CLI de gcloud de Google Cloud Platform. Para obtener instrucciones sobre cómo instalar la CLI de gcloud y configurar un proyecto con una cuenta de servicio, consulta la Guía de inicio rápido.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'Google, headquartered in Mountain View, unveiled the new Android phone at the Consumer Electronic Show.  Sundar Pichai said in his keynote that users love their new Android phones.'
  }
}" "https://language.googleapis.com/v1/documents:analyzeSyntax"

Si no especificas document.language, el idioma se detectará automáticamente. Para obtener información sobre los idiomas compatibles con la API de Natural Language, consulta Idiomas compatibles. Consulta la documentación de referencia de Document para obtener más información sobre la configuración del cuerpo de la solicitud.

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON:

{
  "sentences": [
    {
      "text": {
        "content": "Google, headquartered in Mountain View, unveiled the new Android phone at the Consumer Electronic Show.",
        "beginOffset": 0
      }
    },
    {
      "text": {
        "content": "Sundar Pichai said in his keynote that users love their new Android phones.",
        "beginOffset": 105
      }
    }
  ],
  "tokens": [
    {
      "text": {
        "content": "Google",
        "beginOffset": 0
      },
      "partOfSpeech": {
        "tag": "NOUN",
        "aspect": "ASPECT_UNKNOWN",
        "case": "CASE_UNKNOWN",
        "form": "FORM_UNKNOWN",
        "gender": "GENDER_UNKNOWN",
        "mood": "MOOD_UNKNOWN",
        "number": "SINGULAR",
        "person": "PERSON_UNKNOWN",
        "proper": "PROPER",
        "reciprocity": "RECIPROCITY_UNKNOWN",
        "tense": "TENSE_UNKNOWN",
        "voice": "VOICE_UNKNOWN"
      },
      "dependencyEdge": {
        "headTokenIndex": 7,
        "label": "NSUBJ"
      },
      "lemma": "Google"
    },
    ...
    {
      "text": {
        "content": ".",
        "beginOffset": 179
      },
      "partOfSpeech": {
        "tag": "PUNCT",
        "aspect": "ASPECT_UNKNOWN",
        "case": "CASE_UNKNOWN",
        "form": "FORM_UNKNOWN",
        "gender": "GENDER_UNKNOWN",
        "mood": "MOOD_UNKNOWN",
        "number": "NUMBER_UNKNOWN",
        "person": "PERSON_UNKNOWN",
        "proper": "PROPER_UNKNOWN",
        "reciprocity": "RECIPROCITY_UNKNOWN",
        "tense": "TENSE_UNKNOWN",
        "voice": "VOICE_UNKNOWN"
      },
      "dependencyEdge": {
        "headTokenIndex": 20,
        "label": "P"
      },
      "lemma": "."
    }
  ],
  "language": "en"
}

El arreglo tokens contiene objetos Token que representan los tokens de oraciones detectados, incluida información sobre la categoría gramatical del token y su posición en la oración.

gcloud

Consulta el comando analyze-syntax para obtener todos los detalles.

Para realizar un análisis sintáctico, usa la CLI de gcloud y también utiliza la marca --content para identificar el contenido que se analizará:

gcloud ml language analyze-syntax --content="Google, headquartered in Mountain View, unveiled the new Android phone at the Consumer Electronic Show.  Sundar Pichai said in his keynote that users love their new Android phones."

Si la solicitud es exitosa, el servidor muestra una respuesta en formato JSON:

{
  "sentences": [
    {
      "text": {
        "content": "Google, headquartered in Mountain View, unveiled the new Android phone at the Consumer Electronic Show.",
        "beginOffset": 0
      }
    },
    {
      "text": {
        "content": "Sundar Pichai said in his keynote that users love their new Android phones.",
        "beginOffset": 105
      }
    }
  ],
  "tokens": [
    {
      "text": {
        "content": "Google",
        "beginOffset": 0
      },
      "partOfSpeech": {
        "tag": "NOUN",
        "aspect": "ASPECT_UNKNOWN",
        "case": "CASE_UNKNOWN",
        "form": "FORM_UNKNOWN",
        "gender": "GENDER_UNKNOWN",
        "mood": "MOOD_UNKNOWN",
        "number": "SINGULAR",
        "person": "PERSON_UNKNOWN",
        "proper": "PROPER",
        "reciprocity": "RECIPROCITY_UNKNOWN",
        "tense": "TENSE_UNKNOWN",
        "voice": "VOICE_UNKNOWN"
      },
      "dependencyEdge": {
        "headTokenIndex": 7,
        "label": "NSUBJ"
      },
      "lemma": "Google"
    },
    ...
    {
      "text": {
        "content": ".",
        "beginOffset": 179
      },
      "partOfSpeech": {
        "tag": "PUNCT",
        "aspect": "ASPECT_UNKNOWN",
        "case": "CASE_UNKNOWN",
        "form": "FORM_UNKNOWN",
        "gender": "GENDER_UNKNOWN",
        "mood": "MOOD_UNKNOWN",
        "number": "NUMBER_UNKNOWN",
        "person": "PERSON_UNKNOWN",
        "proper": "PROPER_UNKNOWN",
        "reciprocity": "RECIPROCITY_UNKNOWN",
        "tense": "TENSE_UNKNOWN",
        "voice": "VOICE_UNKNOWN"
      },
      "dependencyEdge": {
        "headTokenIndex": 20,
        "label": "P"
      },
      "lemma": "."
    }
  ],
  "language": "en"
}

El arreglo tokens contiene objetos Token que representan los tokens de oraciones detectados, incluida información sobre la categoría gramatical del token y su posición en la oración.

Go

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Go de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


func analyzeSyntax(ctx context.Context, client *language.Client, text string) (*languagepb.AnnotateTextResponse, error) {
	return client.AnnotateText(ctx, &languagepb.AnnotateTextRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		Features: &languagepb.AnnotateTextRequest_Features{
			ExtractSyntax: true,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

Si deseas obtener información sobre cómo instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Java de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (com.google.cloud.language.v1.LanguageServiceClient language =
    com.google.cloud.language.v1.LanguageServiceClient.create()) {
  com.google.cloud.language.v1.Document doc =
      com.google.cloud.language.v1.Document.newBuilder().setContent(text)
        .setType(com.google.cloud.language.v1.Document.Type.PLAIN_TEXT).build();
  AnalyzeSyntaxRequest request =
      AnalyzeSyntaxRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(com.google.cloud.language.v1.EncodingType.UTF16)
          .build();
  // Analyze the syntax in the given text
  AnalyzeSyntaxResponse response = language.analyzeSyntax(request);
  // Print the response
  for (Token token : response.getTokensList()) {
    System.out.printf("\tText: %s\n", token.getText().getContent());
    System.out.printf("\tBeginOffset: %d\n", token.getText().getBeginOffset());
    System.out.printf("Lemma: %s\n", token.getLemma());
    System.out.printf("PartOfSpeechTag: %s\n", token.getPartOfSpeech().getTag());
    System.out.printf("\tAspect: %s\n", token.getPartOfSpeech().getAspect());
    System.out.printf("\tCase: %s\n", token.getPartOfSpeech().getCase());
    System.out.printf("\tForm: %s\n", token.getPartOfSpeech().getForm());
    System.out.printf("\tGender: %s\n", token.getPartOfSpeech().getGender());
    System.out.printf("\tMood: %s\n", token.getPartOfSpeech().getMood());
    System.out.printf("\tNumber: %s\n", token.getPartOfSpeech().getNumber());
    System.out.printf("\tPerson: %s\n", token.getPartOfSpeech().getPerson());
    System.out.printf("\tProper: %s\n", token.getPartOfSpeech().getProper());
    System.out.printf("\tReciprocity: %s\n", token.getPartOfSpeech().getReciprocity());
    System.out.printf("\tTense: %s\n", token.getPartOfSpeech().getTense());
    System.out.printf("\tVoice: %s\n", token.getPartOfSpeech().getVoice());
    System.out.println("DependencyEdge");
    System.out.printf("\tHeadTokenIndex: %d\n", token.getDependencyEdge().getHeadTokenIndex());
    System.out.printf("\tLabel: %s\n\n", token.getDependencyEdge().getLabel());
  }
  return response.getTokensList();
}

Node.js

Para aprender a instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Node.js de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Need to specify an encodingType to receive word offsets
const encodingType = 'UTF8';

// Detects the sentiment of the document
const [syntax] = await client.analyzeSyntax({document, encodingType});

console.log('Tokens:');
syntax.tokens.forEach(part => {
  console.log(`${part.partOfSpeech.tag}: ${part.text.content}`);
  console.log('Morphology:', part.partOfSpeech);
});

Python

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Python de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import language_v1


def sample_analyze_syntax(text_content):
    """
    Analyzing Syntax in a String

    Args:
      text_content The text content to analyze
    """

    client = language_v1.LanguageServiceClient()

    # text_content = 'This is a short sentence.'

    # Available types: PLAIN_TEXT, HTML
    type_ = language_v1.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {"content": text_content, "type_": type_, "language": language}

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = language_v1.EncodingType.UTF8

    response = client.analyze_syntax(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Loop through tokens returned from the API
    for token in response.tokens:
        # Get the text content of this token. Usually a word or punctuation.
        text = token.text
        print(f"Token text: {text.content}")
        print(f"Location of this token in overall document: {text.begin_offset}")
        # Get the part of speech information for this token.
        # Part of speech is defined in:
        # http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
        part_of_speech = token.part_of_speech
        # Get the tag, e.g. NOUN, ADJ for Adjective, et al.
        print(
            "Part of Speech tag: {}".format(
                language_v1.PartOfSpeech.Tag(part_of_speech.tag).name
            )
        )
        # Get the voice, e.g. ACTIVE or PASSIVE
        print(
            "Voice: {}".format(
                language_v1.PartOfSpeech.Voice(part_of_speech.voice).name
            )
        )
        # Get the tense, e.g. PAST, FUTURE, PRESENT, et al.
        print(
            "Tense: {}".format(
                language_v1.PartOfSpeech.Tense(part_of_speech.tense).name
            )
        )
        # See API reference for additional Part of Speech information available
        # Get the lemma of the token. Wikipedia lemma description
        # https://en.wikipedia.org/wiki/Lemma_(morphology)
        print(f"Lemma: {token.lemma}")
        # Get the dependency tree parse information for this token.
        # For more information on dependency labels:
        # http://www.aclweb.org/anthology/P13-2017
        dependency_edge = token.dependency_edge
        print(f"Head token index: {dependency_edge.head_token_index}")
        print(
            "Label: {}".format(
                language_v1.DependencyEdge.Label(dependency_edge.label).name
            )
        )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language}")

Idiomas adicionales

C#: Sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para .NET.

PHP: Sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para Ruby.

Analiza la sintaxis desde Cloud Storage

Para tu comodidad, la API de Natural Language puede realizar un análisis sintáctico directamente en un archivo ubicado en Cloud Storage, sin la necesidad de que envíes el contenido del archivo en el cuerpo de tu solicitud.

El siguiente es un ejemplo de cómo realizar un análisis sintáctico en un archivo ubicado en Cloud Storage.

Protocolo

Para analizar la sintaxis en un documento almacenado en Cloud Storage, realiza una solicitud POST al método documents:analyzeSyntax de REST y proporciona el cuerpo de la solicitud adecuado con la ruta del documento, como se muestra en siguiente ejemplo.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'gcsContentUri': 'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v1/documents:analyzeSyntax"

Si no especificas document.language, el idioma se detectará automáticamente. Para obtener información sobre los idiomas compatibles con la API de Natural Language, consulta Idiomas compatibles. Consulta la documentación de referencia de Document para obtener más información sobre la configuración del cuerpo de la solicitud.

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON:

{
  "sentences": [
    {
      "text": {
        "content": "Hello, world!",
        "beginOffset": 0
      }
    }
  ],
  "tokens": [
    {
      "text": {
        "content": "Hello",
        "beginOffset": 0
      },
      "partOfSpeech": {
        "tag": "X",
        // ...
      },
      "dependencyEdge": {
        "headTokenIndex": 2,
        "label": "DISCOURSE"
      },
      "lemma": "Hello"
    },
    {
      "text": {
        "content": ",",
        "beginOffset": 5
      },
      "partOfSpeech": {
        "tag": "PUNCT",
        // ...
      },
      "dependencyEdge": {
        "headTokenIndex": 2,
        "label": "P"
      },
      "lemma": ","
    },
    // ...
  ],
  "language": "en"
}

El arreglo tokens contiene objetos Token que representan los tokens de oraciones detectados, incluida información sobre la categoría gramatical del token y su posición en la oración.

gcloud

Consulta el comando analyze-syntax para obtener todos los detalles.

Para realizar un análisis sintáctico en un archivo de Cloud Storage, usa la herramienta de línea de comandos gcloud y también utiliza la marca --content-file para identificar la ruta del archivo que tiene el contenido que analizarás:

gcloud ml language analyze-syntax --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Si la solicitud es exitosa, el servidor muestra una respuesta en formato JSON:

{
  "sentences": [
    {
      "text": {
        "content": "Hello, world!",
        "beginOffset": 0
      }
    }
  ],
  "tokens": [
    {
      "text": {
        "content": "Hello",
        "beginOffset": 0
      },
      "partOfSpeech": {
        "tag": "X",
        // ...
      },
      "dependencyEdge": {
        "headTokenIndex": 2,
        "label": "DISCOURSE"
      },
      "lemma": "Hello"
    },
    {
      "text": {
        "content": ",",
        "beginOffset": 5
      },
      "partOfSpeech": {
        "tag": "PUNCT",
        // ...
      },
      "dependencyEdge": {
        "headTokenIndex": 2,
        "label": "P"
      },
      "lemma": ","
    },
    // ...
  ],
  "language": "en"
}

El arreglo tokens contiene objetos Token que representan los tokens de oraciones detectados, incluida información sobre la categoría gramatical del token y su posición en la oración.

Go

Para aprender a instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la documentación de referencia de la API de Natural Language Go.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


func analyzeSyntaxFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnnotateTextResponse, error) {
	return client.AnnotateText(ctx, &languagepb.AnnotateTextRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		Features: &languagepb.AnnotateTextRequest_Features{
			ExtractSyntax: true,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

Para aprender a instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Java de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (com.google.cloud.language.v1.LanguageServiceClient language =
    com.google.cloud.language.v1.LanguageServiceClient.create()) {
  com.google.cloud.language.v1.Document doc =
      com.google.cloud.language.v1.Document.newBuilder().setGcsContentUri(gcsUri).setType(
        com.google.cloud.language.v1.Document.Type.PLAIN_TEXT
      ).build();
  AnalyzeSyntaxRequest request =
      AnalyzeSyntaxRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(com.google.cloud.language.v1.EncodingType.UTF16)
          .build();
  // Analyze the syntax in the given text
  AnalyzeSyntaxResponse response = language.analyzeSyntax(request);
  // Print the response
  for (Token token : response.getTokensList()) {
    System.out.printf("\tText: %s\n", token.getText().getContent());
    System.out.printf("\tBeginOffset: %d\n", token.getText().getBeginOffset());
    System.out.printf("Lemma: %s\n", token.getLemma());
    System.out.printf("PartOfSpeechTag: %s\n", token.getPartOfSpeech().getTag());
    System.out.printf("\tAspect: %s\n", token.getPartOfSpeech().getAspect());
    System.out.printf("\tCase: %s\n", token.getPartOfSpeech().getCase());
    System.out.printf("\tForm: %s\n", token.getPartOfSpeech().getForm());
    System.out.printf("\tGender: %s\n", token.getPartOfSpeech().getGender());
    System.out.printf("\tMood: %s\n", token.getPartOfSpeech().getMood());
    System.out.printf("\tNumber: %s\n", token.getPartOfSpeech().getNumber());
    System.out.printf("\tPerson: %s\n", token.getPartOfSpeech().getPerson());
    System.out.printf("\tProper: %s\n", token.getPartOfSpeech().getProper());
    System.out.printf("\tReciprocity: %s\n", token.getPartOfSpeech().getReciprocity());
    System.out.printf("\tTense: %s\n", token.getPartOfSpeech().getTense());
    System.out.printf("\tVoice: %s\n", token.getPartOfSpeech().getVoice());
    System.out.println("DependencyEdge");
    System.out.printf("\tHeadTokenIndex: %d\n", token.getDependencyEdge().getHeadTokenIndex());
    System.out.printf("\tLabel: %s\n\n", token.getDependencyEdge().getLabel());
  }

  return response.getTokensList();
}

Node.js

Para aprender a instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la documentación de referencia de la API de Node.js de Natural Language.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Need to specify an encodingType to receive word offsets
const encodingType = 'UTF8';

// Detects the sentiment of the document
const [syntax] = await client.analyzeSyntax({document, encodingType});

console.log('Parts of speech:');
syntax.tokens.forEach(part => {
  console.log(`${part.partOfSpeech.tag}: ${part.text.content}`);
  console.log('Morphology:', part.partOfSpeech);
});

Python

Para obtener información sobre cómo instalar y usar la biblioteca cliente de Natural Language, consulta Bibliotecas cliente de Natural Language. Para obtener más información, consulta la API de Python de Natural Language documentación de referencia.

Para autenticarte en Natural Language, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google.cloud import language_v1


def sample_analyze_syntax(gcs_content_uri):
    """
    Analyzing Syntax in text file stored in Cloud Storage

    Args:
      gcs_content_uri Google Cloud Storage URI where the file content is located.
      e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v1.LanguageServiceClient()

    # gcs_content_uri = 'gs://cloud-samples-data/language/syntax-sentence.txt'

    # Available types: PLAIN_TEXT, HTML
    type_ = language_v1.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": type_,
        "language": language,
    }

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = language_v1.EncodingType.UTF8

    response = client.analyze_syntax(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Loop through tokens returned from the API
    for token in response.tokens:
        # Get the text content of this token. Usually a word or punctuation.
        text = token.text
        print(f"Token text: {text.content}")
        print(f"Location of this token in overall document: {text.begin_offset}")
        # Get the part of speech information for this token.
        # Part of speech is defined in:
        # http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
        part_of_speech = token.part_of_speech
        # Get the tag, e.g. NOUN, ADJ for Adjective, et al.
        print(
            "Part of Speech tag: {}".format(
                language_v1.PartOfSpeech.Tag(part_of_speech.tag).name
            )
        )
        # Get the voice, e.g. ACTIVE or PASSIVE
        print(
            "Voice: {}".format(
                language_v1.PartOfSpeech.Voice(part_of_speech.voice).name
            )
        )
        # Get the tense, e.g. PAST, FUTURE, PRESENT, et al.
        print(
            "Tense: {}".format(
                language_v1.PartOfSpeech.Tense(part_of_speech.tense).name
            )
        )
        # See API reference for additional Part of Speech information available
        # Get the lemma of the token. Wikipedia lemma description
        # https://en.wikipedia.org/wiki/Lemma_(morphology)
        print(f"Lemma: {token.lemma}")
        # Get the dependency tree parse information for this token.
        # For more information on dependency labels:
        # http://www.aclweb.org/anthology/P13-2017
        dependency_edge = token.dependency_edge
        print(f"Head token index: {dependency_edge.head_token_index}")
        print(
            "Label: {}".format(
                language_v1.DependencyEdge.Label(dependency_edge.label).name
            )
        )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language}")

Idiomas adicionales

C#: Sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para .NET.

PHP: Sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Natural Language para Ruby.