
 Reference architecture:

 GKE Enterprise hybrid environment
 (part 2) - implementation details

 Part 1 - Architecture, reference deployments, design prerequisites and considerations

 December 2024

https://cloud.google.com/kubernetes-engine/enterprise/docs/architecture/hybrid-environment#get_the_reference_architecture

 Page 2 of 36

 Table of contents
 Table of contents 2
 Overview 3
 Implementation details 6

 Per-site preparation 6
 Services 6
 Networking 6

 Dataplane v2 7
 Handling high tra�c 8
 Con�gure vSphere 8
 Bare metal deployments 11
 Fleet management 13
 Hardware 14
 Operating system 14
 Config Sync 14

 Cluster con�guration 16
 Application con�guration 16

 Helm templates 17
 Fully hydrated con�guration 18

 Install considerations 19
 Application deployment 20
 Roll out of cluster con�guration 23
 Roll out of an application con�guration 23
 Recommended policies 24

 Service Mesh 24
 Observability 25

 Application monitoring 26
 System monitoring 26
 Logging 28

 Roles and permissions 29
 Project permissions 30
 Cluster permissions 31

 Applications 32
 Namespaces and app projects 32
 Application workspaces 33
 Design and deploy applications 33

 References 35

 Page 3 of 36

 Overview
 Organizations that embrace cloud-�rst technologies like containers, container orchestration, and
 service meshes, o�en reach a point where they need more than a single Kubernetes cluster. Many
 organizations that use Google Cloud also want to run workloads in their own data centers, factory
 �oors, retail stores, or even in other public clouds.

 However, operating multiple Kubernetes clusters has its own di�culty and overhead in terms of
 consistent con�guration, security, and management. For example, manually con�guring one
 Kubernetes cluster at a time creates risks, and it can be challenging to see exactly where errors are
 happening.

 GKE Enterprise is Google's cloud-centric container pla�orm for running modern apps anywhere
 consistently at scale. GKE Enterprise can help organizations by providing a consistent pla�orm that
 lets them:

 ● Modernize applications and infrastructure in-place.
 ● Create a uni�ed cloud operating model (single pane of glass) to create, update, and optimize

 container clusters wherever they are.
 ● Scale large multi-cluster applications as �eets - logical groupings of similar environments - with

 consistent security, con�guration, and service management.
 ● Enforce consistent governance and security from a uni�ed control plane.

 GKE Enterprise helps you increase operational consistency in governance and security and developer
 velocity while reducing cost, deployment risk, and operational complexity. Speci�cally, GKE Enterprise
 helps with the following areas:

 ● Customers who want cloud-like experience on-premises or are looking for a uni�ed solution
 while migrating their applications to cloud (GKE Enterprise hybrid environment).

 ● Google Cloud customers who want to be�er manage their containerized applications (GKE
 Enterprise on Google Cloud).

 ● Customers who want to solv e multicloud complexity with a consistent governance, operations,
 and security posture (GKE Multi-Cloud).

 The following diagram shows a high-level overview of GKE Enterprise in a hybrid environment. GKE
 Enterprise can help with Kubernetes compliance and governance, security, and operations, along with

 Page 4 of 36

 multi-cluster automation and con�guration. Kubernetes clusters managed by GKE Enterprise can then
 run on-premises, in Google Cloud, or in another cloud provider:

 This reference architecture provides opinionated guidance to deploy GKE Enterprise in a hybrid
 environment to address some common challenges that might face.

 In this reference architecture, the term cluster means a Kubernetes cluster managed by GKE unless
 stated otherwise. For example, some sections discuss VMware vSphere clusters composed of ESXi
 servers that pool compute resources.

 This reference architecture is separated into two parts. Make sure you read both parts carefully to
 learn how to plan, design, and implement your own GKE Enterprise hybrid environment:

 Page 5 of 36

 ● Part 1 - Architecture, GKE Enterprise components, reference deployments, design
 prerequisites, and design considerations.

 ● Part 2 (this document) - Implementation details.

https://cloud.google.com/anthos/docs/architecture/anthos-hybrid-environment#get_the_reference_architecture
https://cloud.google.com/anthos/docs/architecture/anthos-hybrid-environment#get_the_reference_architecture

 Page 6 of 36

 Implementation details
 To help you successfully deploy a GKE Enterprise hybrid environment that follows this reference
 architecture, this section contains some important implementation details. These details include the
 suggested Con�g Sync repository structure, recommended project and cluster permission and role
 assignments, and application namespace examples.

 Per-site preparation

 Services
 Create an image repository in each site, such as using JFrog Artifactory or Harbor. This site-level
 repository isn't part of the GKE deployment or supported by Google. If you use Artifact Registry, you
 could set up the site to replicate from the cloud. Or, you could replicate between local repositories
 across sites. This approach stores artifacts close to where they're needed for deployments, and lets
 you replicate a single source of truth across all sites with similar local repositories.

 Networking
 Place each admin cluster on its own VLAN. Place each user cluster on its own VLAN. The following
 guidance also applies:

 ● For GKE on VMware, all nodes of a user cluster should be on the same broadcast domain (one
 subnet and VLAN).

 ● For GKE on bare metal, it’s simpler if all the nodes of a user cluster are on the same broadcast
 domain. Multiple domains may be used if necessary, with the following additional guidance:

 ○ All the load balancer nodes must be on the same broadcast domain.
 ○ Routing tra�c between the L2 domains is your responsibility. GKE doesn't con�gure this

 routing.
 ● Avoid using VLAN-per-node-pool as a security mechanism for separating individual

 applications in a cluster. This con�guration can be complex to manage, and can limit the
 cost-e�ciency bene�ts otherwise expected from moving to containers. Instead, use
 Kubernetes Network Policies and Service Mesh L7 Authorization to meet isolation
 requirements.

 ● All virtual IP addresses (VIPs) must be in the load balancer machine subnet and routable to the
 gateway of the subnet.

 The following diagram shows an example of how the admin cluster and user clusters should be in their
 own VLANs. The user control plane and user node pool components share the same VLAN. The user
 cluster components communicate to the admin cluster and VLAN through the admin cluster API
 controllers:

 Page 7 of 36

 Dataplane v2
 Use Dataplane V2 in your deployments. GKE Dataplane V2 is a data plane that's optimized for
 Kubernetes networking, and is based on eBPF on Linux and Open vSwitch on Windows nodes.
 Dataplane V2 lets you �exibly process network packets in-kernel using Kubernetes-speci�c metadata.

 Page 8 of 36

 Handling high tra�c
 If a site-level load balancer like F5 is available and a cluster is expected to handle a lot of tra�c,
 balance tra�c across several VIPs of the same cluster. Use MetalLB to balance within the cluster.

 Avoid using only a single ingress to handle large numbers of backend services, such as 2,000 services.
 Instead, create several ingresses.

 Con�gure vSphere
 When using vSphere with GKE on VMware, con�gure as follows:

 vCenter user account privileges vCenter Server Administrator role is not required
 for GKE deployment a�er the vSphere
 environment is set up.

 For GKE deployments, we recommend creating
 several roles with varying degrees of privilege to
 limit access to your vCenter environment.

 vCenter se�ings
 ● Enable vCenter High Availability (HA)
 ● Enable vMotion
 ● Enable vSphere HA Host Monitoring 1 with

 Host Failure Response set to Restart
 VMs

 ● Disable vSphere Storage DRS 2

 Use the following options when creating GKE clusters on VMware:

 ● enableControlplaneV2: true
 ● enableDataplaneV2: true
 ● antiAffinityGroups.enabled: true

 The following diagram provides an overview of how GKE on VMware looks in a deployed state. The
 user cluster controller in the admin cluster communicates with vCenter. This connection lets the
 controller create the user cluster VMs:

 Page 9 of 36

 The following diagram shows a more complete example of GKE on VMware deployed in a hybrid
 environment. Additional services like Con�g Sync, Binary Authorization, and Operations Suite
 supplement the on-premises GKE services that run in VMware:

 Page 10 of 36

 The following diagram shows that the control plane VIP sends tra�c to the Kubernetes API. Keepalived
 / HAproxy keep the control plane VIP pointed at a working control plane VM. Node pools are created
 by a controller in the user cluster that talks to vCenter. The control plane VMs are created by the admin
 cluster. There's a dedicated node pool for MetalLB pods, but using the same VLAN as the other node
 pool. The MetalLB pods communicate using ingress VIPs, which also provide inbound tra�c for the
 user workloads:

 Page 11 of 36

 Bare metal deployments
 The following diagram provides an overview of how GKE on bare metal looks in a deployed state. The
 user cluster controller in the admin cluster communicates with the physical machines in your
 environment. This connection lets the controller create and manage the physical user clusters:

 Page 12 of 36

 The following diagram shows that the control plane VIP sends tra�c to the Kubernetes API. Keepalived
 / HAproxy keep the control plane VIP pointed at a working control plane machine. Node pools are
 created by a controller in the user cluster. The control plane machines are created by the admin cluster.
 There's a dedicated node pool for MetalLB pods, but using the same VLAN as the other node pool. The
 MetalLB pods communicate using ingress VIPs, which also provide inbound tra�c for the user
 workloads:

 Page 13 of 36

 Fleet management
 ● Place the prod clusters and their admin clusters in the production �eet,

 project-2-fleet-prod .

 Page 14 of 36

 ● Place the staging cluster and its admin cluster in the staging �eet,
 project-3-fleet-staging .

 Hardware
 GKE can run on a wide range of customer-provided hardware. When you run on virtual machines, they
 can be easily sized to their roles.

 If you deploy GKE on physical machines, it can be more e�cient to include at least some medium
 machines instead of all large-sized machines. Large machines are those that include more RAM and
 number of vCPUs than medium machines. Medium-sized physical machines have be�er utilization
 when they run as user cluster control plane nodes and admin cluster nodes.

 Operating system
 For GKE on bare metal, the base operating system on the nodes is customer-managed. Only install
 those OS packages that are prerequisites for GKE, are needed to monitor the hardware and operating
 system, or to debug issues.

 Because applications are containerized, they largely don't depend on libraries or services that run on
 the base operating system. Instead, application dependencies such as libraries are managed at the
 container image level.

 Con�g Sync
 Con�g Sync is used to manage Kubernetes objects in all the clusters. Con�g Sync is a GitOps-style
 tool. GitOps is a process where a Git source control repository is the source of truth for con�guration.
 Git provider work�ows allow multiple stakeholders to participate in review of changes.

 Con�g Sync can pull con�gurations directly from a Git repository by using an agent in every cluster. It
 can also pull bundled �les from an image registry.

 As shown in the following diagram, the recommended Con�g Sync deployment uses one folder
 containing con�guration for all clusters. Other individual folders each hold con�guration data for one
 application:

 Page 15 of 36

 A Con�g Sync component per cluster pulls con�guration directly from a source control repository or
 an image registry. A cloud management plane lets you centrally con�gure data sources and what tag
 or version of an application to pull. This cloud management plane means that you don't have to
 manually interact with each GKE cluster using the Kubernetes API to make individual con�g or
 application changes.

 Con�g Sync manages in-cluster resources that you de�ne and deploy. Resources that a�ect the whole
 cluster (cluster-wide or cluster-scoped) are managed di�erently from resources that only a�ect one
 namespace (namespace-scoped). The la�er are used to de�ne applications. For GKE on bare metal,
 cluster con�guration dri� is enabled that detects con�guration dri� of the core component manifest
 �les. This con�guration dri� feature is not designed for managing the state of your own components,
 Services, and Deployments. You still use Con�g Sync to manage the state of your own resources.

 Page 16 of 36

 Di�erent categories of resources each have a set of tooling:

 ● Google Cloud resources are managed with the Google Cloud console, gcloud CLI , or
 Terraform.

 ● In-cluster resources are managed with Con�g Sync.
 ○ Con�g Sync doesn't manage admin clusters and their resources.

 This reference architecture uses a speci�c subset of Con�g Sync features. Additional features exist
 and can be used where appropriate. In particular, this reference architecture uses the following
 choices in the use of Con�g Sync:

 ● Uses unstructured mode.
 ● Doesn't use cluster selectors or namespace selectors. Therefore, cluster labels also aren't

 required.
 ● Con�guration can be speci�ed and delivered to each cluster as a template with parameters

 substituted with per-cluster values. Or, use a fully rendered, or hydrated , con�guration to each
 cluster.

 ○ A fully hydrated con�guration allows for users to understand what the desired state is,
 without having to mentally run a transformation process.

 ● Uses Git as the source of truth. Con�g Sync also supports using an OCI image repository 3 or a
 Helm repository 4 to pull con�gurations from.

 Cluster con�guration
 Pla�orm owners de�ne what policies are deployed to all clusters. Policies include the following:

 ● PodSecurity admission controller: Includes preventing Pods from using the root Linux user.
 ● NetworkPolicies: Control the network tra�c inside your clusters.
 ● ClusterRoles and ClusterRoleBindings: Control permissions within a cluster.
 ● Service Mesh: Includes policies such as for authorization, transport security, or security policy

 constraints.
 ● Policy Controller: Install the Policy Controller security bundle for Service Mesh 5 .
 ● User permissions (RBAC) granted cluster-wide.

 The con�guration for each cluster is stored in a Root Repository, also known as a RootSync. The Root
 Repository con�guration includes both literal con�guration resources, and pointers to other
 repositories holding application resources.

 Page 17 of 36

 Application con�guration
 Pla�orm owners can control the speci�cs of each application, or delegate control to application
 owners.

 Applications repositories, also referred to as Namespace Repos or RepoSyncs , con�gure resources
 within a single namespace, including the following:

 ● Workloads such as Deployments and StatefulSets.
 ● VolumeClaims
 ● RBAC permissions scoped to namespace, such as Role and RoleBinding.
 ● Services
 ● Service Mesh con�guration for services in this namespace.

 This reference architecture o�ers a choice of two pa�erns for deploying application con�guration.
 Each approach has advantages and disadvantages:

 ● Helm templates:
 ○ Simple to set up.
 ○ Uses familiar templating pa�erns.
 ○ Templates can become complex to reason about over time.
 ○ Parameters substituted by Con�g Sync in each cluster.

 ● Fully hydrated con�guration:
 ○ More steps to set up.
 ○ Can use templating, or other con�g customization tools like kustomize or kpt .
 ○ Validation tools can run directly on the con�guration during the review process.
 ○ Requires se�ing up a rendering pipeline that reads and writes to Git.
 ○ Both dry and hydrated , or wet, con�gurations are stored in Git.

 ■ Dry means con�guration that uses templates and doesn't have per-cluster or
 per-app customizations applied.

 ■ Hydrated, or wet, mean con�guration with all template parameters substituted
 and per-cluster and per-app customizations applied.

 ○ Storing both types of con�g in Git has the following advantages:
 ■ The Git repository is a source of truth, and you don’t need to mentally run a

 transformation process to be sure of the desired state.
 ■ More �exibility in what processes can be used.
 ■ Greater scope to validate con�guration during the review process.

 Page 18 of 36

 Helm templates
 The Helm templates approach is appropriate for teams that already use the popular open source Helm
 tool to de�ne applications. In the Helm approach, the following bene�ts and management approaches
 can be used:

 ● Application owners specify their applications as Helm Charts, with a limited number of
 parameters (Values).

 ● Pla�orm admins and operators control which application instances are deployed in which
 clusters and namespaces using the Root Repo.

 ● Use Helm templating language to parameterize charts per cluster.
 ● Pla�orm admins and operators control parameter values by cluster.
 ● Pla�orm admins and operators control promotion of new chart versions (rollout across

 clusters).
 ● Anthos Con�g Management pulls hydrated con�g from Git and charts from an image registry.

 Helm con�guration and container images can be stored in the same registry.
 ● Pla�orm policy is validated before deployment, and again when applied to the cluster.

 The following diagram shows how you can write and review Helm charts that can build images to be
 stored in a registry. You can then deploy the Helm carts to the cluster using Con�g Sync:

 Fully hydrated con�guration
 The fully hydrated pa�ern works well when a central pla�orms team wants to create modules and
 allow other teams to modify them, subject to code review.

 In the fully hydrated approach, the following bene�ts and management approaches can be used:

 ● Pla�orm admins and operators de�ne a base application de�nition.
 ● Applications de�ne instantiations with changes to the base de�nition using the pla�orm

 owner's choice of packaging, templating, or customization tool, such as kustomize or kpt .

 Page 19 of 36

 ● Pla�orm owners review modi�cations to the base application de�nition, but don't necessarily
 explicitly have to manage parameters.

 ● A pipeline renders the packages, templates, and customizations to a fully hydrated version of
 the con�guration.

 ● Con�g Sync takes the con�guration verbatim from the repository. This approach is a key
 advantage of the fully hydrated approach as there's no interpretation of your desired
 con�guration.

 ● Pla�orm policy is validated both before deployment in the expansion pipeline, and again when
 applied to the cluster.

 In the following diagram, the modules de�ne tasks to be performed that generates a �nal
 con�guration that is applied to clusters using Con�g Sync:

 Install considerations
 The following steps are performed once to provide a foundation for the deployment:

 ● Create a Git repository for the root con�g, such as $ORGNAME/config-sync-root
 ● Create sub directories for each �eet, such as fleet-prod and fleet-nonprod
 ● Enable Con�g Sync on all clusters of the �eet.

 ○ This step can be done with the Google Cloud console or with Terraform.

 The following steps are performed as each cluster is created:

 Page 20 of 36

 ● Create a directory for that cluster within the root con�g Git repository, such as
 fleet-prod/cluster-abc01-prod .

 ○ Each cluster name must be unique across the organization.
 ● Set up con�guration sync for that cluster.

 ○ You can use the Google Cloud console or Terraform.
 ○ When using Terraform, create a member_feature . The membership has already been

 created when the cluster was, and doesn't require import. Instead, it's an output
 parameter of the gkeonprem user cluster.

 ● The path within the repository is di�erent for each cluster:
 ○ For example, fleet-prod/cluster-abc01-prod . This path is referred to as adding a

 RootSync to the cluster.
 ● Other se�ings can be the same across sites, such as the following:

 ○ All clusters use the same URL, like
 http://$GITPROVIDER/$ORGNAME/config-sync-root

 ■ If Git is mirrored or separated across sites, $GITPROVIDER can be di�erent per
 site.

 ○ All clusters use the same branch, such as HEAD.
 ○ Set Unstructured mode.

 When these steps are done and several clusters have been created, the directory structure for
 config-sync-root looks like the following example:

 fleet-prod/
 cluster-abc01-prod/
 asm/
 policy/
 storage/

 cluster-xyz01-prod/
 asm/
 policy/
 storage/

 fleet-nonprod/

 cluster-abc01-staging/
 asm/
 policy/
 storage/

 Page 21 of 36

 Related policy objects can be grouped into directories by concern. In this example, categories asm/ ,
 policy/ , and storage/ are used.

 Application deployment
 The following steps are performed for each application that you deploy:

 ● Create a Git repository to hold that application's con�guration.
 ■ For example, if the application's name is $X , make a repository

 $ORGANIZATION/app-config-$X .
 ■ Use multiple Git repositories to re�ect administrative boundaries. Each team should

 work in only one repository and ideally di�erent teams have their own repositories.
 ■ To make sure that changes can be reviewed by all stakeholders, use the CODEOWNERS

 feature of GitHub or GitLab.
 ● For each environment and site where the app should run, complete the following steps:

 ■ Create a namespace in the format like $appname-$env-$site by adding it to the
 Root Repo

 ■ Create a reposync.yaml �le in the namespace directory, such as
 cluster-xxx/namespaces/app-site-env/reposync.yaml

 ■ For the Helm approach, point to the artifact registry path and image name (method).
 Set cluster-speci�c values.

 ■ For the fully hydrated approach, set the Git repository and directory for the namespace.
 A single Git repository can be used for Root and Application repositories.

 A�er deploying two applications, the anthos-acm-root directory looks like the following example:

 Page 22 of 36

 fleet-prod/
 cluster-abc01-prod/
 asm/
 namespaces/
 team1/
 app1/
 reposync.yaml
 rbac.yaml

 app2/
 reposync.yaml
 rbac.yaml

 policy/
 storage/

 cluster-xyz01-prod/
 asm/
 namespaces/
 team1/
 app1/
 reposync.yaml
 rbac.yaml

 app2/
 reposync.yaml
 rbac.yaml

 policy/
 storage/

 fleet-nonprod/
 cluster-abc01-staging/
 asm/
 namespaces/
 team1/
 app1/
 reposync.yaml
 rbac.yaml

 app2/
 reposync.yaml
 rbac.yaml

 policy/
 storage/

 Each reposync.yaml �le follows one of the following two pa�erns:

 1. A Git repository and path holding fully hydrated con�guration, like the following example:

 # File: fleet-prod/cluster-abc01-prod/namespaces/app1/reposync.yaml
 apiVersion: configsync.gke.io/v1beta1
 kind: RepoSync
 metadata:
 name: app1
 namespace: config-management-system

 spec:
 sourceFormat: unstructured
 sourceType: git

 Page 23 of 36

 git:
 repo: https://gitmirror.abc01.company.com/team1/app1-config/
 branch: main
 auth: token
 secretRef:

 name: git-repo-secret

 2. An OCI image that holds a Helm chart and has a tag, and Helm parameters like the following
 example:

 # File: fleet-prod/cluster-abc01-prod/namespaces/app1/reposync.yaml
 apiVersion: configsync.gke.io/v1beta1
 kind: RepoSync
 metadata:
 name: app1
 namespace: config-management-system

 spec:
 sourceFormat: unstructured
 sourceType: helm
 helm:
 repo: oci:/imgreg.abc01.company.com/team1/manifests/app1:v1.1
 chart: app1
 version: v2
 releaseName: instance1
 namespace: app1
 auth: token
 secretRef:
 name: helm-repo-secret

 values:
 param1: 1234
 param2: asdf

 Roll out of cluster con�guration
 Determine an order of updates for clusters. Update staging before production, and one site at a time.
 Apply edits to each cluster subdirectory at a time, such as in the following order:

 1. fleet-nonprod/cluster-abc01-staging

 2. fleet-prod/cluster-abc01-prod

 3. fleet-prod/cluster-xyz01-pro

 Page 24 of 36

 Roll out of an application con�guration
 Use a development cluster to test changes. There can be one cluster for each application team. These
 clusters should use the same base con�guration or Helm chart, but be parameterized to use test data
 and dependencies. Refactoring applications so that they can work in di�erent environments with
 similar con�guration is an important part of achieving frequent successful deployments.

 Complete the following steps to deploy an application at a new image tag:

 ● Helm approach:
 ○ The app is built into an image with a new tag.
 ○ Update the Root repository to use the tag, progressively in a series of clusters, like in

 cluster-acb01-staging and then in production clusters like
 cluster-abc01-prod and cluster-xyz01-prod .

 ● Fully hydrated approach:
 ○ Modify the parameters that control the image tag in that cluster, such as a

 Kustomize.yaml or Kptfile.
 ○ Review and commit.
 ○ Pipeline expands con�guration and commits to Namespace repository.
 ○ Con�g Sync pulls the fully expanded con�g from the Namespace repository.
 ○ Repeat this process progressively in a series of clusters.

 Recommended policies
 The following policy bundles are recommended:

 ● K8sPSPHostFilesystem 6

 ○ This policy ensures that applications don't take unexpected dependencies on the host
 operating system version, which allows independent application and OS updates. This
 policy also helps to increase security.

 ● Consider requiring mesh authorization for each namespace 7.

 ○ Start with Namespace level, rather than at the workload selector or mesh level.
 ○ Use EnvoyFilters when �ner control of authorization is needed.

 ● You can also port existing policies from OpenShi� 8 .

 Service Mesh
 Service Mesh provides security, observability, and tra�c management features both within and across
 clusters 9 . In this reference architecture, only the within-cluster capabilities of Service Mesh are used.

 Page 25 of 36

 Clusters don't have to connect with each other. However, metrics for equivalent services, those with
 the same service name and namespace name, can be readily viewed in aggregate.

 Con�gure Service Mesh as follows:

 ● Service Mesh for GKE clusters is unmanaged. Follow the instructions to set up a multi-cluster
 mesh. However, don't set up cross-cluster trust 10 .

 ● Enable strict mTLS.
 ○ As a security best practice, enable strict mTLS at the mesh level 11 .
 ○ To enforce this se�ing, use the policy bundle with strict mode 12 .

 ● mTLS certi�cates for in-mesh communication:
 ○ Protect the CA signing key by selecting either Mesh CA or Certi�cate Authority Service

 (CA Service).
 ■ Use CA service if you have special CA requirements 13 . Otherwise, use Mesh CA.

 ○ Install Mesh CA or CA Service.
 ● Certi�cates for serving ingress tra�c:

 ○ Use external certi�cate management on ingress 14 and egress 15 .
 ○ Applications can continue to use existing application certi�cates, such as Let's Encrypt

 or Google-managed certi�cates.
 ● Enable Cloud Monitoring (HTTP in-proxy metrics), which is part of the pla�orm and included as

 system metrics.
 ● Implementation of the following examples items is optional and can be enabled when

 convenient a�er initial deployment:
 ○ User authentication with Identity-Aware Proxy.
 ○ User authentication with your existing Identity Provider.
 ○ Service Mesh user authentication.

 Observability
 The following diagram shows how application developers and application or pla�orm operators can
 view logging and monitoring data in Google Cloud. The on-premises clusters and applications send
 this logging and monitoring data back to Google Cloud for analysis and review:

 Page 26 of 36

 The following observability considerations apply to this reference architecture:

 ● All observability data for production clusters, such as system logs, system metrics, application
 logs, and application metrics, is directed into project-2-fleet-prod .

 ● All observability data for staging clusters is directed into project-3-fleet-staging .
 ● The pla�orm team may create a dashboard for each application, with application operators

 given access to that application's dashboard.
 ○ The dashboard may contain container-level metrics, service metrics (Service Mesh),

 application-speci�c metrics if applicable, log-based metrics, and logs panels (if
 appropriate).

 ○ Grant members of the team access to their appropriate dashboard. This approach gives
 access to their metrics without exposing other team's metrics.

 ○ Use Identity and Access Management (IAM) conditions based on the resource name
 a�ached to the project resource, such as project-x-ops , if the teams need log
 access.

 ● If compatible with company policies, give application operators and application developers
 view access to project-x-ops .

 Page 27 of 36

 ○ Application developers and application operators can bene�t from debugging other
 services that they depend on or are dependencies of.

 ○ Placing all metrics and logs in a single project allows most e�ective use of Cloud
 Operations.

 ○ Placing all metrics and logs in a single project ensures proper tagging of logs and
 metrics with cluster identi�ers.

 ● Pla�orm teams should create dashboards and grant permissions with IAM conditions on them
 for one or more appropriate teams to see the dashboard.

 Application monitoring
 ● All application metrics go to the operations project.
 ● Application metrics are automatically labeled and the labels can be used for aggregation of

 metrics. Labels include the cluster name, namespace name, project, pod name, deployment
 name, and user-provided Kubernetes labels. The following Applications section provides more
 details on recommended labels.

 ● Applications which provide Service Mesh services also produce service logs. These service logs
 also go to the operations project.

 ● You have two options for giving application developers access to monitoring data:
 ○ Give application developer teams view permissions on the namespace and on the

 cloud resources in this team / function project.
 ○ Delegate dashboard access with a third-party tool.

 System monitoring
 We recommended that you set service level indicators (SLIs) to track the health of GKE clusters, and
 de�ne playbooks for responding to these conditions. The following suggested SLIs cover the ability
 and performance of the cluster to schedule workloads. These SLIs use metrics that are available in
 Cloud Monitoring:

 ● Control plane responsiveness:
 ○ Suggested SLI: 90th percentile control plane request latency
 ○ PromQL expression:

 histogram_quantile(0.9,sum(
 rate(kubernetes_io:anthos_apiserver_request_duration_seconds
 _bucket[5m])) by (cluster_name, le))

 ○ Alert: Establish a baseline value and then alert if 2x above baseline.
 ○ Response to alert: Control plane latency may increase if an excessive number of objects

 are created, or if automated processes are sending an excessive number of requests.

 Page 28 of 36

 ● Node availability:
 ○ Suggested SLI : Number of nodes not ready for more than 10 minutes.
 ○ PromQL expression:

 sum(kubernetes_io:anthos_kube_node_status_condition{conditio
 n="Ready",status="true"})/sum(kubernetes_io:anthos_kube_node
 _status_condition{condition="Ready"})

 ○ Alert: Start by alerting if any nodes aren't ready for more than 10 minutes. Adjust with
 experience with your workloads.

 ○ Response to alert:
 ■ Check last known values of secondary node status conditions, such as with the

 following PromQL expressions:
 ● Memory pressure:

 sum
 (kubernetes_io:anthos_kube_node_status_condition{
 condition="MemoryPressure",status="true"})

 ● Running out of disk space:

 sum
 (kubernetes_io:anthos_kube_node_status_condition{
 condition="DiskPressure",status="true"})

 ■ Con�rm network reachability between unready node and control plane.

 ● Scheduler latency:
 ○ Suggested SLI: Median end-to-end scheduling latency (the length of time that it takes

 from Pod creation to when the node name is set on the Pod object).
 ○ PromQL expression:

 histogram_quantile(0.5,sum(kubernetes_io:anthos_scheduler_po
 d_scheduling_duration_seconds_bucket) by (le))

 ○ Alert: Start by alerting if the median scheduling time exceeds one second. Adjust with
 experience with your workloads.

 ○ Response to alert:

 Page 29 of 36

 ■ Investigate number of pending pods in scheduler queue
 (kubernetes_io:anthos_scheduler_pod_scheduling_duration_seco
 nds)

 ■ Investigate pending pod resource status.

 ● Monitor your cluster networking (DataplaneV2) metrics to avoid exceeding kernel resource
 limits 16 .

 Page 30 of 36

 Logging
 Choose one of the following options for providing logs access to application operator teams:

 ● Grant application operator teams view access to the logs project. This approach works well if
 a single application operator team already manages most applications and has application logs
 access.

 ● Don't grant view access to application operator teams. This approach works well if existing
 policies don't allow application operator teams to access logs.

 ● Create logging views 17 for each application operator team. Create a �lter to control which logs
 each application operator team can use. This approach works when there are several, but less
 than 25, di�erent application operator teams that each manage di�erent sets of applications.

 Roles and permissions
 In this section, permissions are suggested for two di�erent types of organizations.

 In the �rst type of organization, a pla�orm team hides the complexity of operations and infrastructure
 for developers. Application developers don't directly participate in operating applications in staging
 and production environments. They might be unaware of facts like their containerized applications are
 deployed onto Kubernetes, what clusters exist, or how individual applications are replicated. For this
 type of organization, the minimum permissions are recommended.

 The second type of organization promotes the development of a DevOps culture - a shared sense of
 responsibility between development and operations teams for the health of services. This approach
 requires additional permissions for application teams. The expanded permissions are recommended
 for the second type of organization.

 GKE Enterprise supports both types of organization, and organizations at various points in between.

 The following roles are assumed:

 ● Application developer team:
 ○ In the �rst type of organization, there may be no need for this role to have permissions

 on any of the resources covered in this document.
 ○ In the second type, application developer teams are assumed to take a role in observing

 whether their applications meet service level objectives. To make these observations,
 teams need some level of access to monitoring, and to see the con�guration and status
 of deployed applications. Teams don't necessarily need to see the logging data itself,
 which might contain more sensitive information.

 Page 31 of 36

 ○ In larger organizations of the second type, there might be multiple distinct application
 developer roles, like app-dev-team-1 , app-dev-team-2 , or app-dev-team-3 .
 Each team might specialize in developing and operating di�erent sets of applications.

 ● Application operator and SRE team:
 ○ The application operator team typically sets SLOs or alerts for applications, and

 responds to application-level issues.

 ● Network specialists team:
 ○ The network operations team manages global and local tra�c in aggregate, and

 controls the lower layers of the network stack.

 ● Pla�orm admins and operators team:
 ○ The pla�orm team develops and manages a pla�orm which application developers use

 to deploy applications, while meeting numerous security, governance, reliability, cost,
 and other constraints.

 ○ In the �rst type of organization, the pla�orm team may also take on the application
 operator role.

 ○ In the second type of organization, the application operators are typically a distinct role.

 Project permissions
 The following table outlines the roles that each persona should be assigned to the various projects
 used in this reference architecture:

 Role Project Minimum permissions Expanded permissions

 Application
 developer
 team xyz

 project-0-net ∅ ∅

 project-2-fleet-prod

 project-3-fleet-staging

 ∅ roles/monitoring.viewer

 roles/gkeonprem.admin
 roles/gkehub.viewer
 roles/gkehub.gatewayEditor
 roles/gkeonprem.viewer

 project-n-app-xyz ∅ roles/viewer

 Application
 operations
 and SRE
 team for
 application
 of team xyz

 project-0-net ∅ roles/viewer

 project-2-fleet-prod

 project-3-fleet-staging

 roles/monitoring.viewer

 roles/gkehub.viewer
 roles/gkehub.gatewayEditor
 roles/gkeonprem.viewer

 roles/monitoring.viewer

 roles/logging.viewer
 or
 roles/logging.viewAccessor

 roles/gkehub.viewer
 roles/gkehub.gatewayEditor

 Page 32 of 36

 roles/gkeonprem.viewer
 roles/logging.viewer

 project-n-app-xyz roles/viewer roles/editor

 Network
 specialists
 team

 project-0-net roles/viewer roles/owner

 project-2-fleet-prod
 project-3-fleet-staging

 ∅ roles/monitoring.viewer

 project-n-app-n ∅ roles/viewer

 Pla�orm
 admins and
 operators
 team

 project-0-net roles/monitoring.viewer roles/monitoring.viewer

 project-2-fleet-prod

 project-3-fleet-staging

 roles/owner roles/owner

 project-n-app-xyz roles/owner roles/owner

 Some application development teams might develop multiple applications, and some application
 operators and SRE teams might operate apps from multiple development teams. In the previous table,
 xyz refers to one or more applications or groups of closely related applications. Some individuals
 might also work on multiple teams.

 Cluster permissions
 The following table outlines the permissions that each persona should be assigned to the clusters used
 in this reference architecture:

 Role Cluster type Minimum permissions Expanded permissions

 Application
 developer and
 operator teams
 xyz

 Admin cluster ∅ ∅

 User cluster
 (production)

 ∅ Cluster read-only 1

 User cluster (non-production) Namespace read-only 1 Cluster read-only

 Namespace read-write 1

 Network
 specialists
 team

 Admin cluster ∅ ∅

 User cluster
 (production)

 ∅ ∅

 User cluster (non-production) ∅ ∅

 Pla�orm
 admins and
 operators team

 Admin cluster Cluster admin [1]

 User cluster
 (production and non-production)

 Cluster admin [1]

 Google Admin cluster Read-only [2]

 Page 33 of 36

 Support
 (Google
 employees)

 User cluster ∅ Read-only [2]

 1: Generate with gcloud container hub memberships generate-gateway-rbac (ref)
 2: Generate with gcloud container hub memberships generate-gateway-rbac —anthos-support (ref)

 Applications

 Namespaces and app projects
 Use the following guidance for naming namespaces and projects:

 ● When you create a new application, give it a descriptive name pre�x, such as shoppingcart
 for a shopping cart service.

 ● Create a project to hold Google Cloud resources related to the application, like images, such as
 project-5-shoppingcart-app .

 ● Compose a namespace name which is the same as the application name. In this example, the
 namespace would be called shoppingcart .

 ● Typically, you use the global DNS load balancer to balance incoming tra�c across sites for the
 shopping cart service.

 Some services might run at multiple sites and are fungible, meaning that any one of them can serve
 the same request. In this scenario, use the following pa�ern:

 ● Use the same namespace name in all clusters that receive a share of the same tra�c from the
 global tra�c manager.

 ● Use the same service name at each site.

 As an example, you might run the shoppingcart service in cluster cluster-abc01-prod and
 cluster-xyz01-prod . Both clusters serve requests for the shopping cart portion of the same
 website, so both clusters use the same namespace name.

 For a set of services that have similar con�guration, but handle di�erent types of requests or data, use
 di�erent namespace names for each instance. For example, if three separate database instances need
 to be deployed to hold user, product, and sales data, put them in namespaces user-db ,
 product-db , and sales-db .

 During version rollout, Service Mesh can be used to do blue-green update, or Kubernetes deployment
 may be used for rolling update.

https://cloud.google.com/sdk/gcloud/reference/container/hub/memberships/generate-gateway-rbac
https://cloud.google.com/sdk/gcloud/reference/container/hub/memberships/generate-gateway-rbac

 Page 34 of 36

 For a set of services that have a similar service con�guration, like from the same Helm chart, but aren't
 fungible or won't ever see the same request stream, use di�erent namespace names. For example,
 two services on di�erent sites or the same site that serve di�erent purposes like logistics and sales,
 use namespaces like logistics-db and sales-db .

 Application workspaces
 ● Allocate application names from a global centrally managed list. Avoid reuse within your

 organization.
 ○ Namespace names are constructed from application name plus su�xes which indicate

 environment and location.
 ○ Don't use the same application or namespace name for two unrelated purposes, even

 across clusters. If these clusters are later combined into a single �eet, the namespace
 names will then collide.

 ● Create a new namespace when deploying an application that is new to GKE.
 ○ Several closely interacting applications can share a namespace, if they're developed

 and managed by the same team.
 ● Make a team or function project for each namespace.

 ○ Several namespaces that are developed and managed by the same people can share a
 project.

 ● For each application that needs to interact with Google Cloud resources:
 ○ Create a service account in the application's project, such as project- n -app- xyz .
 ○ Grant the workload identities in that namespace permission to access cloud resources

 that they need to operate, such as Cloud Storage buckets or Cloud databases.

 Design and deploy applications
 ● When possible, refactor monolithic applications into smaller services 18 .
 ● When building images for newly wri�en applications, prefer distro-less images.
 ● Where possible, use active-active replication for applications, and use the following

 considerations:
 ○ Run at least three Pods for low tra�c production applications.
 ○ Place these Pods behind a service.
 ○ When porting larger single instance applications, reduce the memory and CPU

 requirements proportionally.
 ○ Running a single Pod is acceptable for development environments where you don't

 need redundancy.

 Page 35 of 36

 ● Run distributed applications across clusters, with multi-cluster ingress. This approach helps
 distribute application load, and helps minimize the impact of a miscon�guration or failed
 application update in one cluster.

 ● Stateful applications can be deployed in containers.
 ○ Use pod disruption budgets (PDBs) to de�ne your tolerance of disruptions 19 .

 ● When deploying a new application, create a P odMonitoring resource 20 for each workload
 (statefulset, deployment) in the application's namespace. This approach sends application
 metrics to the operations project. Mesh service-level metrics should also go to that project.

 Page 36 of 36

 References
 1. h�ps://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35E

 FDD-F8B7-4FAF-B946-6553D7BDBF31.html
 2. h�ps://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-82

 7DBD6D-08B7-4411-9214-9E126671457F.html
 3. h�ps://opencontainers.org/
 4. h�ps://helm.sh/docs/topics/chart_repository/
 5. h�ps://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/how-to/using-as

 m-security-policy
 6. h�ps://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/latest/reference/

 constraint-template-library#k8spsphos�ilesystem
 7. h�ps://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-prac

 tices#enable-access-controls
 8. h�ps://cloud.google.com/architecture/migrations
 9. h�ps://cloud.google.com/architecture/service-meshes-in-microservices-architecture
 10. h�ps://cloud.google.com/service-mesh/docs/uni�ed-install/o�-gcp-multi-cluster-setup
 11. h�ps://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-prac

 tices
 12. h�ps://cloud.google.com/anthos-con�g-management/docs/how-to/using-asm-security-policy

 #high_strictness_level
 13. h�ps://cloud.google.com/service-mesh/docs/uni�ed-install/install-anthos-service-mesh#install

 _ca_service
 14. h�ps://istio.io/v1.14/docs/tasks/tra�c-management/ingress/secure-ingress/
 15. h�ps://istio.io/latest/docs/tasks/tra�c-management/egress/egress-gateway-tls-origination/
 16. h�ps://cloud.google.com/kubernetes-engine/distributed-cloud/bare-metal/docs/limits#datapla

 ne_v2_ebpf_limit
 17. h�ps://cloud.google.com/logging/docs/logs-views
 18. h�ps://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths
 19. h�ps://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-

 disruption
 20. h�ps://cloud.google.com/kubernetes-engine/distributed-cloud/vmware/docs/how-to/applicati

 on-logging-monitoring

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35EFDD-F8B7-4FAF-B946-6553D7BDBF31.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35EFDD-F8B7-4FAF-B946-6553D7BDBF31.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-827DBD6D-08B7-4411-9214-9E126671457F.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-827DBD6D-08B7-4411-9214-9E126671457F.html
https://opencontainers.org/
https://helm.sh/docs/topics/chart_repository/
https://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/how-to/using-asm-security-policy
https://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/how-to/using-asm-security-policy
https://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/latest/reference/constraint-template-library#k8spsphostfilesystem
https://cloud.google.com/kubernetes-engine/enterprise/policy-controller/docs/latest/reference/constraint-template-library#k8spsphostfilesystem
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices#enable-access-controls
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices#enable-access-controls
https://cloud.google.com/architecture/migrations
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://cloud.google.com/service-mesh/docs/unified-install/off-gcp-multi-cluster-setup
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices
https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy#high_strictness_level
https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy#high_strictness_level
https://cloud.google.com/service-mesh/docs/unified-install/install-anthos-service-mesh#install_ca_service
https://cloud.google.com/service-mesh/docs/unified-install/install-anthos-service-mesh#install_ca_service
https://istio.io/v1.14/docs/tasks/traffic-management/ingress/secure-ingress/
https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway-tls-origination/
https://cloud.google.com/kubernetes-engine/distributed-cloud/bare-metal/docs/limits#dataplane_v2_ebpf_limit
https://cloud.google.com/kubernetes-engine/distributed-cloud/bare-metal/docs/limits#dataplane_v2_ebpf_limit
https://cloud.google.com/logging/docs/logs-views
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths
https://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-disruption
https://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-disruption
https://cloud.google.com/kubernetes-engine/distributed-cloud/vmware/docs/how-to/application-logging-monitoring
https://cloud.google.com/kubernetes-engine/distributed-cloud/vmware/docs/how-to/application-logging-monitoring

